Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway.

Identifieur interne : 001028 ( Main/Exploration ); précédent : 001027; suivant : 001029

Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway.

Auteurs : Partha Chakrabarti [États-Unis] ; Ju Youn Kim ; Maneet Singh ; Yu-Kyong Shin ; Jessica Kim ; Joerg Kumbrink ; Yuanyuan Wu ; Mi-Jeong Lee ; Kathrin H. Kirsch ; Susan K. Fried ; Konstantin V. Kandror

Source :

RBID : pubmed:23858058

Descripteurs français

English descriptors

Abstract

One of the basic functions of insulin in the body is to inhibit lipolysis in adipocytes. Recently, we have found that insulin inhibits lipolysis and promotes triglyceride storage by decreasing transcription of adipose triglyceride lipase via the mTORC1-mediated pathway (P. Chakrabarti et al., Diabetes 59:775-781, 2010), although the mechanism of this effect remained unknown. Here, we used a genetic screen in Saccharomyces cerevisiae in order to identify a transcription factor that mediates the effect of Tor1 on the expression of the ATGL ortholog in yeast. This factor, Msn4p, has homologues in mammalian cells that form a family of early growth response transcription factors. One member of the family, Egr1, is induced by insulin and nutrients and directly inhibits activity of the ATGL promoter in vitro and expression of ATGL in cultured adipocytes. Feeding animals a high-fat diet increases the activity of mTORC1 and the expression of Egr1 while decreasing ATGL levels in epididymal fat. We suggest that the evolutionarily conserved mTORC1-Egr1-ATGL regulatory pathway represents an important component of the antilipolytic effect of insulin in the mammalian organism.

DOI: 10.1128/MCB.01584-12
PubMed: 23858058
PubMed Central: PMC3753874


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway.</title>
<author>
<name sortKey="Chakrabarti, Partha" sort="Chakrabarti, Partha" uniqKey="Chakrabarti P" first="Partha" last="Chakrabarti">Partha Chakrabarti</name>
<affiliation wicri:level="2">
<nlm:affiliation>Boston University School of Medicine, Boston, Massachusetts, USA. pc1@csiriicb.in</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Ju Youn" sort="Kim, Ju Youn" uniqKey="Kim J" first="Ju Youn" last="Kim">Ju Youn Kim</name>
</author>
<author>
<name sortKey="Singh, Maneet" sort="Singh, Maneet" uniqKey="Singh M" first="Maneet" last="Singh">Maneet Singh</name>
</author>
<author>
<name sortKey="Shin, Yu Kyong" sort="Shin, Yu Kyong" uniqKey="Shin Y" first="Yu-Kyong" last="Shin">Yu-Kyong Shin</name>
</author>
<author>
<name sortKey="Kim, Jessica" sort="Kim, Jessica" uniqKey="Kim J" first="Jessica" last="Kim">Jessica Kim</name>
</author>
<author>
<name sortKey="Kumbrink, Joerg" sort="Kumbrink, Joerg" uniqKey="Kumbrink J" first="Joerg" last="Kumbrink">Joerg Kumbrink</name>
</author>
<author>
<name sortKey="Wu, Yuanyuan" sort="Wu, Yuanyuan" uniqKey="Wu Y" first="Yuanyuan" last="Wu">Yuanyuan Wu</name>
</author>
<author>
<name sortKey="Lee, Mi Jeong" sort="Lee, Mi Jeong" uniqKey="Lee M" first="Mi-Jeong" last="Lee">Mi-Jeong Lee</name>
</author>
<author>
<name sortKey="Kirsch, Kathrin H" sort="Kirsch, Kathrin H" uniqKey="Kirsch K" first="Kathrin H" last="Kirsch">Kathrin H. Kirsch</name>
</author>
<author>
<name sortKey="Fried, Susan K" sort="Fried, Susan K" uniqKey="Fried S" first="Susan K" last="Fried">Susan K. Fried</name>
</author>
<author>
<name sortKey="Kandror, Konstantin V" sort="Kandror, Konstantin V" uniqKey="Kandror K" first="Konstantin V" last="Kandror">Konstantin V. Kandror</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23858058</idno>
<idno type="pmid">23858058</idno>
<idno type="doi">10.1128/MCB.01584-12</idno>
<idno type="pmc">PMC3753874</idno>
<idno type="wicri:Area/Main/Corpus">000F88</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F88</idno>
<idno type="wicri:Area/Main/Curation">000F88</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F88</idno>
<idno type="wicri:Area/Main/Exploration">000F88</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway.</title>
<author>
<name sortKey="Chakrabarti, Partha" sort="Chakrabarti, Partha" uniqKey="Chakrabarti P" first="Partha" last="Chakrabarti">Partha Chakrabarti</name>
<affiliation wicri:level="2">
<nlm:affiliation>Boston University School of Medicine, Boston, Massachusetts, USA. pc1@csiriicb.in</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Ju Youn" sort="Kim, Ju Youn" uniqKey="Kim J" first="Ju Youn" last="Kim">Ju Youn Kim</name>
</author>
<author>
<name sortKey="Singh, Maneet" sort="Singh, Maneet" uniqKey="Singh M" first="Maneet" last="Singh">Maneet Singh</name>
</author>
<author>
<name sortKey="Shin, Yu Kyong" sort="Shin, Yu Kyong" uniqKey="Shin Y" first="Yu-Kyong" last="Shin">Yu-Kyong Shin</name>
</author>
<author>
<name sortKey="Kim, Jessica" sort="Kim, Jessica" uniqKey="Kim J" first="Jessica" last="Kim">Jessica Kim</name>
</author>
<author>
<name sortKey="Kumbrink, Joerg" sort="Kumbrink, Joerg" uniqKey="Kumbrink J" first="Joerg" last="Kumbrink">Joerg Kumbrink</name>
</author>
<author>
<name sortKey="Wu, Yuanyuan" sort="Wu, Yuanyuan" uniqKey="Wu Y" first="Yuanyuan" last="Wu">Yuanyuan Wu</name>
</author>
<author>
<name sortKey="Lee, Mi Jeong" sort="Lee, Mi Jeong" uniqKey="Lee M" first="Mi-Jeong" last="Lee">Mi-Jeong Lee</name>
</author>
<author>
<name sortKey="Kirsch, Kathrin H" sort="Kirsch, Kathrin H" uniqKey="Kirsch K" first="Kathrin H" last="Kirsch">Kathrin H. Kirsch</name>
</author>
<author>
<name sortKey="Fried, Susan K" sort="Fried, Susan K" uniqKey="Fried S" first="Susan K" last="Fried">Susan K. Fried</name>
</author>
<author>
<name sortKey="Kandror, Konstantin V" sort="Kandror, Konstantin V" uniqKey="Kandror K" first="Konstantin V" last="Kandror">Konstantin V. Kandror</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="eISSN">1098-5549</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>3T3-L1 Cells (MeSH)</term>
<term>Adipocytes (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Cells, Cultured (MeSH)</term>
<term>DNA-Binding Proteins (genetics)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Early Growth Response Protein 1 (genetics)</term>
<term>Early Growth Response Protein 1 (metabolism)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>HEK293 Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Insulin (metabolism)</term>
<term>Lipase (genetics)</term>
<term>Lipase (metabolism)</term>
<term>Lipolysis (MeSH)</term>
<term>Male (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>Multiprotein Complexes (genetics)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>TOR Serine-Threonine Kinases (genetics)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adipocytes (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Cellules 3T3-L1 (MeSH)</term>
<term>Cellules HEK293 (MeSH)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (génétique)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Facteur de transcription EGR-1 (génétique)</term>
<term>Facteur de transcription EGR-1 (métabolisme)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Insuline (métabolisme)</term>
<term>Lipolyse (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de liaison à l'ADN (génétique)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée C57BL (MeSH)</term>
<term>Sérine-thréonine kinases TOR (génétique)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
<term>Triacylglycerol lipase (génétique)</term>
<term>Triacylglycerol lipase (métabolisme)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Early Growth Response Protein 1</term>
<term>Lipase</term>
<term>Multiprotein Complexes</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Facteur de transcription EGR-1</term>
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
<term>Saccharomyces cerevisiae</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Triacylglycerol lipase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Adipocytes</term>
<term>DNA-Binding Proteins</term>
<term>Early Growth Response Protein 1</term>
<term>Insulin</term>
<term>Lipase</term>
<term>Multiprotein Complexes</term>
<term>Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adipocytes</term>
<term>Complexes multiprotéiques</term>
<term>Facteur de transcription EGR-1</term>
<term>Facteurs de transcription</term>
<term>Insuline</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
<term>Saccharomyces cerevisiae</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Triacylglycerol lipase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>3T3-L1 Cells</term>
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Evolution, Molecular</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Lipolysis</term>
<term>Male</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules 3T3-L1</term>
<term>Cellules HEK293</term>
<term>Cellules cultivées</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Humains</term>
<term>Lipolyse</term>
<term>Mâle</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Transduction du signal</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">One of the basic functions of insulin in the body is to inhibit lipolysis in adipocytes. Recently, we have found that insulin inhibits lipolysis and promotes triglyceride storage by decreasing transcription of adipose triglyceride lipase via the mTORC1-mediated pathway (P. Chakrabarti et al., Diabetes 59:775-781, 2010), although the mechanism of this effect remained unknown. Here, we used a genetic screen in Saccharomyces cerevisiae in order to identify a transcription factor that mediates the effect of Tor1 on the expression of the ATGL ortholog in yeast. This factor, Msn4p, has homologues in mammalian cells that form a family of early growth response transcription factors. One member of the family, Egr1, is induced by insulin and nutrients and directly inhibits activity of the ATGL promoter in vitro and expression of ATGL in cultured adipocytes. Feeding animals a high-fat diet increases the activity of mTORC1 and the expression of Egr1 while decreasing ATGL levels in epididymal fat. We suggest that the evolutionarily conserved mTORC1-Egr1-ATGL regulatory pathway represents an important component of the antilipolytic effect of insulin in the mammalian organism. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23858058</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5549</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>33</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>3659-66</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/MCB.01584-12</ELocationID>
<Abstract>
<AbstractText>One of the basic functions of insulin in the body is to inhibit lipolysis in adipocytes. Recently, we have found that insulin inhibits lipolysis and promotes triglyceride storage by decreasing transcription of adipose triglyceride lipase via the mTORC1-mediated pathway (P. Chakrabarti et al., Diabetes 59:775-781, 2010), although the mechanism of this effect remained unknown. Here, we used a genetic screen in Saccharomyces cerevisiae in order to identify a transcription factor that mediates the effect of Tor1 on the expression of the ATGL ortholog in yeast. This factor, Msn4p, has homologues in mammalian cells that form a family of early growth response transcription factors. One member of the family, Egr1, is induced by insulin and nutrients and directly inhibits activity of the ATGL promoter in vitro and expression of ATGL in cultured adipocytes. Feeding animals a high-fat diet increases the activity of mTORC1 and the expression of Egr1 while decreasing ATGL levels in epididymal fat. We suggest that the evolutionarily conserved mTORC1-Egr1-ATGL regulatory pathway represents an important component of the antilipolytic effect of insulin in the mammalian organism. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chakrabarti</LastName>
<ForeName>Partha</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Boston University School of Medicine, Boston, Massachusetts, USA. pc1@csiriicb.in</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Ju Youn</ForeName>
<Initials>JY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>Maneet</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shin</LastName>
<ForeName>Yu-Kyong</ForeName>
<Initials>YK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Jessica</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kumbrink</LastName>
<ForeName>Joerg</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Yuanyuan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Mi-Jeong</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kirsch</LastName>
<ForeName>Kathrin H</ForeName>
<Initials>KH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fried</LastName>
<ForeName>Susan K</ForeName>
<Initials>SK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kandror</LastName>
<ForeName>Konstantin V</ForeName>
<Initials>KV</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 AG039612</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AG039612</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R56 DK052057</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DK052057</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DK52057</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051766">Early Growth Response Protein 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C486109">Egr1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007328">Insulin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C081937">MSN4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.1.3</RegistryNumber>
<NameOfSubstance UI="D008049">Lipase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.1.3</RegistryNumber>
<NameOfSubstance UI="C494445">PNPLA2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.1.3</RegistryNumber>
<NameOfSubstance UI="C506904">Tgl4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D041721" MajorTopicYN="N">3T3-L1 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017667" MajorTopicYN="N">Adipocytes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051766" MajorTopicYN="N">Early Growth Response Protein 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007328" MajorTopicYN="N">Insulin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008049" MajorTopicYN="N">Lipase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008066" MajorTopicYN="N">Lipolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23858058</ArticleId>
<ArticleId IdType="pii">MCB.01584-12</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.01584-12</ArticleId>
<ArticleId IdType="pmc">PMC3753874</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Med (Berl). 2000;78(2):81-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10794543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2009 May;16(5):782-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19229250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2002 Dec;193(3):287-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12384981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Dec 13;277(50):47972-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12393900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 26;278(52):52298-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2004 Aug;287(2):E282-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15271647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Sep 9;431(7005):200-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15306821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Oct 30;258(5083):766-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1439783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Jul;13(7):3872-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8321194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Sep;19(9):6286-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10454575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 5;279(45):47066-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15337759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2006 Aug;4(2):133-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16890541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetologia. 2006 Oct;49(10):2427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16906479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2007 Apr;87(2):507-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17429039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 15;284(20):13296-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19297333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2009 May;16(5):764-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19460352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 3;284(27):18282-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19433586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2009 Sep;48(5):275-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19464318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2010 Apr;59(4):775-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20068142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2010 May 18;18(5):763-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20493810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2010 Sep 1;111(1):207-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20506119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Nov;30(21):5009-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20733001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Nov 3;12(5):533-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21035763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2011 Mar 2;13(3):249-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21356515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Apr 22;286(16):14508-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21321112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Endocrinol Metab. 2011 Aug;96(8):E1293-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21613358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2011 Sep;52(9):1693-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21743036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Aug 26;286(34):29501-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21712389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2011 Oct;60(10):2441-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21948998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2011 Oct 12;111(10):6359-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21627334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2012 Aug;23(8):391-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22721584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 19;279(47):48968-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15364929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Nov 19;306(5700):1383-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15550674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2005 May;1(5):323-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16054079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Endocrinol. 2005 Aug 30;240(1-2):43-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16009485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2005 Nov;46(11):2477-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16150821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2006 Jan;55(1):148-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16380488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2006 Jan;7(1):106-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16239926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jan 6;281(1):491-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16267052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 5;312(5774):734-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2006 Jul;291(1):E115-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16705060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2006 Jul 1;66(13):6708-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16818645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Endocrinol Metab. 2007 Jun;92(6):2292-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17356053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Jun 15;21(12):1443-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17575046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Nutr. 2007;27:79-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17313320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1736-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2008 May;9(5):367-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18401346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Jun 1;412(2):179-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18466115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2008 Jun 28;371(9631):2153-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18586159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 Nov 1;22(21):2953-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18981474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2008 Dec 15;105(6):1430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18980248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2009 Jan;50(1):3-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2009 Mar;296(3):E445-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19106247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2002 Jan;51(1):7-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11756317</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Fried, Susan K" sort="Fried, Susan K" uniqKey="Fried S" first="Susan K" last="Fried">Susan K. Fried</name>
<name sortKey="Kandror, Konstantin V" sort="Kandror, Konstantin V" uniqKey="Kandror K" first="Konstantin V" last="Kandror">Konstantin V. Kandror</name>
<name sortKey="Kim, Jessica" sort="Kim, Jessica" uniqKey="Kim J" first="Jessica" last="Kim">Jessica Kim</name>
<name sortKey="Kim, Ju Youn" sort="Kim, Ju Youn" uniqKey="Kim J" first="Ju Youn" last="Kim">Ju Youn Kim</name>
<name sortKey="Kirsch, Kathrin H" sort="Kirsch, Kathrin H" uniqKey="Kirsch K" first="Kathrin H" last="Kirsch">Kathrin H. Kirsch</name>
<name sortKey="Kumbrink, Joerg" sort="Kumbrink, Joerg" uniqKey="Kumbrink J" first="Joerg" last="Kumbrink">Joerg Kumbrink</name>
<name sortKey="Lee, Mi Jeong" sort="Lee, Mi Jeong" uniqKey="Lee M" first="Mi-Jeong" last="Lee">Mi-Jeong Lee</name>
<name sortKey="Shin, Yu Kyong" sort="Shin, Yu Kyong" uniqKey="Shin Y" first="Yu-Kyong" last="Shin">Yu-Kyong Shin</name>
<name sortKey="Singh, Maneet" sort="Singh, Maneet" uniqKey="Singh M" first="Maneet" last="Singh">Maneet Singh</name>
<name sortKey="Wu, Yuanyuan" sort="Wu, Yuanyuan" uniqKey="Wu Y" first="Yuanyuan" last="Wu">Yuanyuan Wu</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Chakrabarti, Partha" sort="Chakrabarti, Partha" uniqKey="Chakrabarti P" first="Partha" last="Chakrabarti">Partha Chakrabarti</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001028 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001028 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23858058
   |texte=   Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23858058" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020